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This paper is concerned with the effect on the bulk motion of applying torque 
by external means to the particles of a suspension. Our investigation is based 
upon theoretical consideration of the motion of a dilute suspension of per- 
manently magnetized spheroids, in the presence of a uniform magnetic field, 
for cases in which the motion of a Newtonian fluid would be uni-directional. For 
convenience, we have divided the work into two parts: in the first, the particles 
are assumed to be perfectly spherical and the magnetic field strength to be 
arbitrary; in the second, the particles are taken as arbitrary spheroids (with their 
magnetic dipole axis coincident with the axis of revolution), but the magnetic 
field is assumed to be strong enough to ensure that the magnetic dipole axis of 
each particle is effectively aligned with the field vector H. We concentrate 
attention on the development of general criteria which allow an a priori deter- 
mination as to whether the bulk motion remains uni-directional in the presence 
of particle couples, and (when the motion is uni-directional) whether the resultant 
velocity profile has the same form as for a Newtonian fluid. In  addition, we 
evaluate the effective viscosity of the suspension for several representative cases 
in which the velocity field is Newtonian in form. Finally, as an example of the 
general situation in which the bulk velocity field does not remain mi-directional, 
we obtain the solution for the motion through a circular tube when the magnetic 
particles are spherical and the magnetic field is applied at  right angles to the tube 
axis. 

1. Introduction 
In recent years, considerable effort has been directed toward the theoretical 

determination of the macroscopic, rheological properties of particulate suspen- 
sions from a consideration of the interactions, on the microscopic scale, between 
the suspending fluid and the individual particles when the suspension is under- 
going a given bulk motion. When the suspension is dilute, the suspending fluid 
Newtonian, the particles rigid spheres, and the particle Reynolds number suffi- 
ciently small, the suspension can be described in bulk as a Newtonian fluid with 
an effective viscosity p* = ,u(l++) provided only that the particles are not 
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subjected to an externally applied force or couple (cf. Einstein 1906, 1911; 
Batchelor 1967). For the more general case where the particles are non-spherical, 
or are subjected to an externally applied couple, the non-isotropic, microscopic 
structure of the suspension usually results in a non-Newtonian form for the bulk 
atress tensor (Batchelor 1970). The supposition of Newtonian behaviour, with 
the effect of fluid-particle interactions limited to modifications of the effective 
viscosity, is inadequate for the general rigid-particle suspension. It is the purpose 
of the present communication to investigate, for a particular class of flows, the 
dynamical consequences of the non-Newtonian form for the bulk stress which 
arises due to the action of an externally applied couple when the particles are 
spheroidal in shape. 

There are, of course, several physical mechanisms for applying a torque to the 
particles of a suspension. Of these, Brenner (1970) has recently discussed the 
creeping motion of a suspension of neutrally buoyant, ‘loaded’ spheres (i.e. 
spheres whose centres of mass and volume are not coincident) in the presence of 
a gravitational field. In our work, which paralleled that of Brenner (1970), we 
employ Batchelor’s (1970) expression for the bulk stress to deal with the similar 
problem of the motion of a dilute suspension of permanently magnetized 
spheroids in the presence of a uniform applied magnetic field. We limit ow 
investigation to cases in which the motion of a Newtonian fluid would be 
wni-directional. A third possible mode for applying torque to suspension particles, 
which has not yet been fully investigated, involves the action of an electric (or 
magnetic) field on dielectric (or magnetizable) particles. The physical mechanism 
differs from that of the present paper in that the particle dipole is induced rather 
than permanent. This additional interaction with the external field causes the 
motion of the individual particles of the suspension to be different from that 
which occurs when the dipole is permanent. 

After presenting the relevant rheological and dynamical equations applicable 
to spheroidal particles of arbitrary aspect ratio, we consider the bulk motion for 
two particular cases, In  the first, the particles are assumed to be perfectly 
spherical and the field strength to be essentially arbitrary. Here we employ Hall 
& Busenberg (1969) in discussing the motion of the individual particles. In  the 
second case, the particles are taken as arbitrary spheroids, but the magnetic field 
is assumed to be sufficiently strong to ensure that the magnetic dipole axis of 
each particle is effectively aligned with the field vector H. This division of the 
problem is largely a matter of convenience, which is motivated by the extremely 
complicated nature of the bulk rheological equation in the case of general 
spheroids (Batchelor 1970). First of all, the couple gives rise to both a symmetric 
and a non-symmetric contribution to the bulk stress. Even in the absence of any 
applied couples, however, the bulk stress remains non-Newtonian in form when 
the particles are spheroidal (though it is then symmetric). On the other hand, 
when the particles are spherical, the effect of an externally applied couple is 
confined to the generation of an anti-symmetric contribution to the bulk stress. 
Separate consideration of the spherical case thus allows a qualitative estimation 
of the role of the non-symmetric portion of the bulk stress in determining the 
nature of the bulk motion of a suspension in which external particle couples are 
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present. The subsequent consideration of the case of general spheroidal particles 
then allows a limited, though representative, assessment of the effect of particle 
shape. Fortunately, the form of the anti-symmetric contribution to the bulk 
stress is unchanged in generalizing to the case of spheroids, so that any corre- 
sponding changes in the fundamental character of the bulk velocity fields can 
be wholly ascribed to the resultant non-Newtonian nature of the symmetric 
contributions to the bulk stress. 

Although some of our results in the spherical case are similar to those of 
Brenner (1970), the present work concentrates on situations in which the motion 
of a Newtonian fluid would be uni-directional, and, in particular, presents a more 
detailed account of the general properties of the resulting flow fields. In  so doing, 
it represents a necessary preliminary to the rheologically more complicated case 
of a suspension of spheroidal particles. The basic solution procedures we have 
used, though developed independently, bear a very close resemblance to those 
employed by Brenner (1970). In order to avoid undue repetition, we have abbrevi- 
ated considerably the preliminary parts of the paper that had been prepared 
shortly before Brenner's work was published. 

2. The expression for the bulk stress 
We consider a suspension of permanently magnetized, rigid spheroids in an 

incompressible Newtonian fluid. We suppose that the suspended particles are 
close enough so that, for purposes of calculating the bulk motion, the suspension 
may be considered as a homogeneous fluid, and, in addition, sufficiently small 
that the effects of gravity and inertia may be neglected relative to viscous forces 
in the flow near one particle. However, the particles are assumed to be large 
enough for random rotations due to Brownian motion to be negligible, and to be 
sufficiently far apart for both hydrodynamic and magnetic dipole interactions 
between the particles to also be neglected. The magnetic dipole moment of the 
spheroids M is assumed to be fixed and the dipole axis (MIX) to be coincident 
with the axis of revolution of the particles.? Furthermore, we suppose that the 
suspension is sufficiently dilute that the induced magnetic field can be neglected 
compared to the applied field. I n  order to avoid magnetic body forces on the 
particles, the applied magnetic field is assumed to be uniform (i.e. H = const.). 

Batchelor (1970) gave the general form of the bulk stress for a suspension of 
spheroids with the properties described above when the particles are subjected 
to external body couples. Thus, 

rij = -pdij + 2,ue,, + rlj, 
where 

t Subsequently, we shall employ m to denote MIM. 
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ab2(a2+b2)pipj + ab2(a2 + b2)2 
and Li E - (a2 + b2) J2 + a2j2 (a2 + b2))"J2 + 2a2b212 (8ij-PiPj)) r)~),  (3) 

The vectors p, q, r are orthogonal unit vectors, with p parallel to the axis of 
revolution of the spheroid. The semi-diameters of the spheroid, measured 
parallel and perpendicular to the axis of revolution, have been denoted by 
a and b, respectively. The non-dimensional integral functions 4, 4 depend only 
on the shape of the spheroid, and are defined in Batchelor (1970). 

In the above equations, p is the bulk pressure, e the bulk rate-of-strain tensor, 
c the volume concentration of spheroids in the suspension and ,u the viscosity bf 
the suspending (ambient) fluid. Also, L is the external torque applied to the 
particles, which gives rise to a rotation of the particle relative to the surrounding 
fluid with angular velocity I'O. In  addition, when the particles are not spherical, 
the pure straining portion of the motion of the ambient fluid causes an additional 
relative rotation of the particle with angular velocity I?). A full description of the 
origin and physical significance of the various contributions to the 'particle 
stress' LT& may be found in Batchelor's (1 970) paper. For the present purposes, it 
will suffice to emphasize the distinctly non-Newtonian nature of the bulk stress. 
This is particularly evident in the contribution which arises from the external 
couple, since it consists, in part, of an anti-symmetric term. However, for general 
spheroids, even the symmetric contributions to the bulk stress are non-Newtonian 
in form, the coefficient relating the stress to the bulk rate of strain, for example, 
being essentially a fourth-order tensor. It is of fundamental interest to determine 
the dynamical consequences of this non-Newtonian character of the bulk stress. 
In  this paper we therefore consider the relatively simple, though representative, 
example of the steady motion of the suspension (described by (1)-(5)) for cases 
in which the motion of a Newtonian fluid would be uni-directional. 

3. The equations for flow in a straight tube of constant cross-section 

( 1 H 5 )  : 
We begin with the usual equations of steady motion, and use the relations 

p ( u . V ) u  = -Vp+pV2U+V.~ ' fO(C2) ,  ( 6 a )  

v.u = 0. ( 6 b )  

We note that V .  a' is of O(c). As indicated in ( sa ) ,  these equations are only valid 
to O(c), where c < 1, since particle-particle interactions were neglected in the 
derivation of the constitutive relation equation (2). Hence, in seeking a solution 
for the bulk motion in a given situation, we employ the expansions, 

u = u(0) + cu(1) + 0 (c2), 
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Since the lowest-order approximation to  the particle stress is O(c), it is clear, in 
view of the accuracy of (6  a) ,  that only do) will enter into the analysis. Formally, 
do) is obtained from (2) to ( 5 )  by employing the dynamical variables eii, Li, wi and 
Ti, evaluated using the O( 1) velocity field do). Throughout the remainder of this 
paper, we shall assume that the undisturbed velocity field corresponds to the 
uni-directional, fully developed flow of a Newtonian fluid through a straight 
cylindrical tube, and hence that d o )  (and thus do) also) is a known function 
satisfying 

Therefore, we consider here only the determination of the O(c) modification 
which results from the presence of the particles, i.e. u(l) and pl. The general 
equations governing the O(c) velocity and pressure fields for fully developed 
flow in a tube are simply 

pV2u(0) = const., V . do) = 0. 

p(u(1’. V) u(0) = - Vp1 + pV2u(1) + v . a’@) (8  a )  

V.U(1) = 0. (8 b )  

The term (do). V) dl), which would generally appear in (8 a) ,  is identically zero 
here as a result of the assumption that the velocity field is fully developed, i.e. 
that u ( = u(O)+~u(~)+. ..) is independent of position along the direction of the 
tube axis. A further consequence of this assumption is that the components of 
( S a ) ,  governing motion in the plane normal to the direction of the undisturbed 
flow, are uncoupled from the equation governing the velocity component parallel 
to d o ) . ?  Combined with their linearity in u(I), this uncoupling renders the solution 
of (Sa ,  b )  particularly simple in principle. Indeed, if we denote the O(1) and O(c) 
velocity components in the direction of the undisturbed motion its wo and wl, 
respectively, and define the ordinary stream function $ based on the velocity 
components in the plane normal to do), (8 a, b )  can be expressed simply as 

(9 a )  

(9 b )  

V4$ = i . [V x (V . d o ) ) ] ,  

pV2w1 = i . [Vpl + p(u(1). V) u(0) - v . a’(O)]. 

Here i denotes the unit vector in the direction of the undisturbed velocity d o ) .  
These equations are to be solved subject to the usual no-slip condition at  solid 
surfaces of the flow vessel, 

In the form (9 a-c), it is evidently possible that the resultant velocity field may 
be neither uni-directional, nor have a Newtonian form for the streamwise profile 
(i.e. wo+cwl). We note from ( S a ) ,  however, that 

(10) 

is both a necessary and a sufficient condition for the form of the velocity field to 
be unchanged (to O(c)) from that which would occur with a Newtonian fluid. 

t We note, in passing, that the assumption of fully developed, uni-directional un- 
disturbed flow also leads to considerable simplification in the term V .a’ (O) which we will 
discuss a t  a later stage of the paper. 

u(l) = 0 on S. (9c) 

v x (V .a“*)) = 0 
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Provided that the velocity field is fully developed, it can be shown (as is obvious 
from 9a,  b)  that an entirely equivalent set of conditions is 

i . [V x (V . a"O')] 0, (L la )  

i . [V . &"I = const. ( 1 l b )  

If (1 1 a) is satisfied, then there will be no motion in the plane normal to do). If, 
in addition, (1 1 b)  is satisfied, then the resultant uni-directional velocity field 
will have a profile which is completely indistinguishable from that of a Newtonian 
fluid with an effective viscosity, 

Hence, under the rather special circumstances in which both of (11  a, 6 )  (or 
equivalently (10)) are met, it is sufficient, so far as the velocity field is concerned, 
to consider the rheological effects of the particle shape and external couples 
solely in terms of variations of the effective viscosity. In  view of (9 a, b ) ,  however, 
the concept of Newtonian behaviour with a modified effective viscosity is 
insufficient in the general case, even for a determination of the bulk velocity field. 

In  $5 4-6 we consider the application of the general equations of 3 3 to the 
special cases of (i) spherical particles with magnetic fields of arbitrary strength, 
and (ii) general spheroidal particles in the strong-field limit. Rather than simply 
solve ( 9 a - c )  for a variety of vessel geometries, as is possible, we concentrate 
attention on the development of general criteria applicable to the whole class of 
problems, which will allow an a priori assessment of the nature of the motion 
that will occur in any particular case, 

4. General results for spherical particles 

are assumed to be spherical. In  particular, (1)-(5) reduce to 
A considerable simplification occurs in the equations of Q 3 when the particles 

CT.. 23 = - paij + 2p( 1 +$c)  eif + 3pcsij, rk, (13) 

v4$ = i. [v (v r(o))], V 4 a )  

(14b)  

so that the O(c) equations of motion (9 a, 71) become 

p w1 = i . [vpl +,+(I). v) ~ ( 0 )  - 5 2P v2 ~ ( 0 )  - 3Pv r(o)]. 
I?) denotes the angular velocity of the spherical particles relative to the O(1) 
velocity field (i. e. relative to 4 curl do)). Brenner (1970) evaluated I'(O) in terms 
of the undisturbed flow field and the particle dipole vector. For the case of 
permanently magnetized spheres in a magnetic field, his expression becomes 

r(0) - &,+o) + {+fo). m} m , (15) 
where M is the magnetization vector ( M  = [MI = dipole strength) and 
d o )  curldo). The validity of this expression depends crucially on the fact 
(established by Hall & Busenberg 1969) that m is fixed in space. These authors 
employed the standard Poincare-Bendixson theory to show that the solution 
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of the equations for the creeping motion of an individual magnetic sphere, 
immersed in a simple shear flow in the presence of a uniform external field, has 
a globally stable stationary point corresponding to free rotation of the particle 
about its magnetic dipole axis, which assumes a $xed orientation relative to the 
magnetic field vector H and the undisturbed vorticity vector do). This fixed 
orientation is defmed by 

FIGURE 1. The intrinsic co-ordinate system employed by Hall & Busenberg (1969). 

where sin2 q5, = i( 1 + p-2) - [ $( 1 + /3-2)2 - p-2 sin2 714, ( 1 7 4  

sine, = p csc sin +,, (17 6 )  

together with the additional requirements that q5s and y lie in the same quadrant 
and 0 < 0, < in-. Here y is the angle between H and do) and the parameter ,8 is 
defined as 

in which a is the particle radius and K is the magnetic permeability of the 
suspending fluid. As shown in figure 1, q5s and 0, are the polar angles in an 
intrinsic co-ordinate system defined relative to the vectors do) and H. An 
exceptional case, discussed by Brenner (1970), for which this stationary point is 
not stable, occurs when y = in and p > 1. In  what follows, we assume that if 
y = +n-, then p < 1 ; otherwise we do not restrict the magnetic field strength. The 
equations (14)-( 18) are sufficient, in principle, to determine the O(c)  modification 
of the bulk velocity field in the suspension, given the details of €3 and the geometry 
of the flow region (hence u(O)). It is worth noting that a considerable simplification 
occurs in the strong-field limit where p-. 0, since then M and H are effectively 

26 F L M  46 
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parallel, and (16)-( 18) become superfluous; the particles simply rotate about the 
H axis. 

Brenner (1970) noted the important conclusion (which at  first seems sur- 
prising, in view of the distinctly non-Newtonian form of the stress tensor (13)), 
that, when 

the velocity field (to O(c)) will be indistinguishable from that for a Newtonian 
fluid. This condition (29) is, of course, a special case (for spherical particles) of 
thegeneral condition (10) whichwenotedpreviously, and is applicable to arbitrary 
undisturbed velocity fields. Nevertheless, we consider the alternative and entirely 
equivalent set of conditions corresponding to (1 1 a, b) ,  which have the following 
two obvious advantages for application to cases in which the undisturbed 
motion is uni-directional. First, it is important to be able to predict whether 
secondary motion occurs (regardless of the form of the ' uni-directional ' velocity 
component). This follows from the fact that the actual computation of $ can be 
extremely tedious, owing to the often complicated form of the right-hand side 
of (14 a) ,  coupled with the observation that, in general, this solution is a necessary 
prerequisite for the determination of wl, which is the quantity of primary interest 
since it is directly related to such important properties as the volume flow-rate. 
Secondly, the condition (1 1 b )  is of a form which, when satisfied, allows immediate 
determination of the effective viscosity of the suspension. In  addition to these 
inherent advantages, we expand the relevant vector equations to obtain condi- 
tions expressed wholly in terms of the properties of the applied field H and the 
undisturbed velocity field do). 

(19) v (v r q  0, 

4.1. The existence of secondaryjlow 
From (1 1 a )  and (13), the condition that no secondary motion should occur is 

(20 a )  
simply 

This expression is the only non-homogeneous source term for the vorticity com- 
ponent i . dl), which must itself be non-zero in general, for secondary motion to 
occur. On employing the definition of w, equation (15)) the condition (20a) can 
be expressed as 

i . [$Vzo(0) + V [V . { ( $ d o )  . m) m}] - Vz{ ( &do) . m ) m}] = 0. 
Since the undisturbed uni-directional motion has been assumed to be fully 
developed, and since i . do) = 0, this simplifies to 

i. [v (v x r q  = 0. 

i . [V2{+w(0). m> m] = 0. (20 b )  
Taken in conjunction with the expression (16) for m, this condition is still quite 
complex. In two important particular cases, however, no secondary motion 
will occur. First, if the applied field H is aligned parallel to the uni-directional 
undisturbed motion, then y = in, and, provided p < 1 so that (16) is valid, 

do), m E 0. 

Since (20 b )  is linear in d o ) .  m, it is clear that no secondary motion can occur in 
this case. The second class of problems, where ( 2 0 b )  is satisfied, occurs, for 
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arbitrary geometry of the flow region and direction of the magnetic field, in the 
strong-field limit /3 = 0, where m and H are effectively parallel. Provided that 
H is uniform, as assumed, (20 b )  reduces to 

as p+- 0. Since V20(0) = 0 for arbitrary (undisturbed) uni-directional flows, we 
conclude that, provided the magnetic field is strong enough to align the particle 
dipoles with H, there can be no secondary flow. In  a magnetic suspension con- 
sisting of single domain ferromagnetic particles of cobalt in toluene, McTague 
(1969) has estimated that this strong field condition is satisfied for values of H 
larger than about 1000 Gauss, a moderate value. 

4.2. The form of the velocity profile for cases of no secondary motion 
The determination of the form of the velocity component w1 (14 71) is complicated 
in the general case by the coupling of the inertial terms with the secondary 
velocity field. When no secondary motion occurs, however, the condition (1 1 b )  is 
sufficient for the modified velocity profile to have the same form as would occur 
for a Newtonian fluid. When the particles are spherical, this condition can be 

(21 a )  
simply expressed as 

Here we have employed K to denote the constant i . V2u(0). As shown in figure 2, 
the angles a and 6 d e h e  the orientation of the magnetic field relative to the 
undisturbed uni-directional velocity, do). When (21) (as well as (20)) is satisfied, 
the velocity and pressure fields can, as stated previously, be calculated by 
treating the suspension as a Newtonian fluid with an effective viscosity (see 

i . ~ 3 ~ v  rq  = ~ p f ( a ,  6). 

(12)) o f  
- 

It is clear from (21) and (22) that p* depends not only on the orientation of the 
magnetic field H but also on the form of the undisturbed velocity profile, and 
hence on the geometry of the flow vessel. 

#'when H is parallel to u@), 
since Po) = -&do) for all f l ( 0  < /3 6 1). Hence, as noted by Brenner (1970), the 
modified velocity field will be of the same form as that of a Newtonian fluid with 
viscosity p* = p( 1 + 4c). We note that the effective viscosity in this case has the 
unusual property of being completely independent of the vessel geometry (do)). 

In  the strong-field case, where /3 is effectively zero, the condition (21) becomes 

The condition (21) is trivially satisfied withf(a, 6) 

provided H is uniform. In  order to obtain explicit requirements on the form of 
the undisturbed flow which satisfies this condition, it is convenient to employ the 
Cartesian co-ordinate system we have already defined in figure 2. The direction 
of undisturbed motion is taken parallel to i,, with the i,, i, axes being arbitrary, 
except for the requirement that (il, i,, i,) be orthogonal. We take 

u(0) = u(O)(x,, x,) i,, 
26-2 
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d o )  z curl u(0) = wIo)(xl, x,) i, + who)(x,, x,) i,, 

and let H = H(sin ai, + cos CI cos Si, + cos a sin Gi,). 

With these conventions it is easily shown that (21 b )  becomes 

The first-term on the left-hand side clearly contributes a 'Newtonian' modifica- 
tion to the undisturbed uni-directional velocity profile. The general condition 
(21 a )  thus reduces, in the special case ,8 N 0, to the requirement that both "10) 

and (u$O) be either constant or linear functions of x, and x,. This will be the case 
for all two-dimensional mi-directional flows, as well as such common three- 

/ 

FIGURE 2. The oo-ordinate axes relative to the undisturbed velocity vector 
and the magnetic field vector. 

dimensional situations as the flow through tubes of circular and elliptic cross- 
section, and hence the modified velocity field will be of the same form as that of 
a Newtonian fluid in these cases, provided only that p - 0. As indicated by (22) ,  
the evaluation off(a, 6) from (21 c) is equivalent to finding the effective viscosity 
p*. For reference, we list (p*-p)/pc for the circular and elliptic tube and for 
two-dimensional Poiseuille flow in table 1, where, for convenience, we have 
taken i,, i, to be coincident with the axes of symmetry of the undisturbed 
velocity profiles. For the special case of two-dimensional Poiseuille flow with 
the magnetic field vector H normal to the vorticity vector this result was 
obtained previously by Hall & Busenberg (1969), while that for a circular tube 
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oriented with its axis parallel or perpendicular to H was obtained by Brenner 
(1970). The flow through an annulus of arbitrary cross-section is an example of 
a class of problems in which the vorticity condition is not met, and hence, 
though the velocity field remains uni-directional according to ( ~ O C ) ,  the profile 
will differ in form from that of a Newtonian fluid. This serves to emphasize that 
it is only under quite special circumstances that the suspension will have a 
Newtonian form of the velocity distribution. 

Geometry 
(i) Circular tube 

(ii) Infinite parallel walk (two-dimensional 
Poiseuille flow). Note: 8 = corres- 
ponds to H being in the plane of shear 
flow 

xa ya 
(iii) Elliptic tube (with surface -+- = 1). 

aa ba 
Note: 8 = &r corresponds to H being sin28 cos28 
coincident with the major semi- 
diameter a 

TABLE 1 

We note, as might be expected, that the class of uni-directional undisturbed 
flows, for which the resultant velocity field is completely Newtonian (hence 
satisfying Brenner’s condition (19)  or equivalently our (20 )  and ( 2 1 ) ) ,  is demon- 
strably smaller than that for which the motion simply remains uni-directional. 
In  practical terms, this distinction is quite important, since it implies that the 
detailed analysis of the velocity and pressure fields is greatly simplified for 
a significantly more general class of problems than one would have expected on 
the basis of the condition (19) .  With regard to the latter cases, it is noteworthy 
that the very suggestive result obtained by Brenner (1970), whereby an apparent 
viscosity of p( 1 + +) was found both for flow through a horizontal circular tube 
(equivalent to 01 = 0) and for horizontal Stokes’ translation of a large sphere, is 
not recovered for the flow through a tube of elliptic cross-section, nor would it 
be expected, except by chance, in other more general flow coniigurations. 

5. Flow of a suspension of magnetic spheres through a circular tube 
The laminar flow through a circular tube provides a particularly simple and 

interesting example, which illustrates many of the general properties outlined 
in $4.  

We employ cylindrical co-ordinates (p, $, z), as shown in figure 3, with the 
z axis in the direction of the undisturbed uni-directional flow. Due to the in- 
dependence of the tube geometry on $, the applied magnetic field H is charac- 
terized by a single angle a. If we choose the (y, z) plane so that it contains H, 
then we can write 

H = H (  cos a sin $iP + cos a cos $id + sin aia). 
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The applied pressure gradient along the pipe is supposed to be given, equal to 
- P, i.e. 

--- a’ - P (constant), 
ax 

and the velocity field to be fully developed. Then the ‘undisturbed’ velocity 
field, u@), consists of simple Poiseuille flow, 

where we have non-dimensionchized with respect to the centreline velocity 
w = (Pa2)/(4p*) and the tube radius. For simplicity, we have included the 
Einstein contribution to the velocity profile in the zeroth solution. 

uio) = 1 - p 2  u(o) = (0 )  = 0 
2 @ U P  f 

FIGURE 3. The co-ordinate system for the flow through a circular cylinder. 

As noted in $4, the O(c) equations for @and up) are independent of up). Hence, 
we introduce the stream function $, defined by 

1 a$ all. 
pa$ ap 

u13---, 2, --, 

so that the governing equations (14 a, b ) ,  minus the Einstein term, become 

Here, for convenience, we have employed (u, v, w) to denote (up, u9, uz), and have 
called (aw/v*) the Reynolds number, R. We shall solve these equations subject 
to the boundary conditions, 

(23 c) 
p=-=o, a$ w , = o  at  p = l ,  

aP 
and boundedness, of the solutions at  the centreline, p = 0. 
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5.1. The case /3 O(H-+co) 
The simplest case to analyse occurs for /3 
here we can replace m by H/H in the definition of (15). Hence, 

0,  when m and H are coincident since 

r(O) = p s i n a c o s a c 0 ~ $ i , + p ~ o s ~ a ~ 0 ~ $ s i n $ i , + p ( c o s 2 a c o s ~ $ -  l)i$, 

and the O(c)  equations of motion (23 a ,  b )  become 

V4$ = 0,  

V2wl = 6(1- Q cos2a). 

The solution of these equations satisfying the boundary conditions (23 c) is 

@ = 0, 

w1 = -#(l-Qcos2a)(l-p2). 

Hence, as predicted by the general considerations of $ 4  there is no secondary 
motion for any angle a when /3 = 0. In  addition, the uni-directional velocity 
profile remains parabolic to O(c) ,  becoming 

ua [I - #c( 1 - * cosZa)] (1 -p2) + O(c2). 

5.2. The case $ small, a = 0. 

The more general case where /3 is small, but non-zero, is somewhat more difficult 
since M and H are not necessarily coincident. However, the solution is illustrative 
of the resulting velocity fields when the anti-symmetric character of the stress 
tensor (1 3) is manifested in both secondary motion and a modified profile shape 
for the axial component. 

Employing the definitions of (15)-( 18), together with the relationship 

cosy = cos a cos $ (24) 

between the angles y and a, we can express m and hence PO) in terms of the 
components in cylindrical co-ordinates, obtaining 

p cos sin &(sin 0, sin a + cos 0, cos a sin $) 
(sin2 a + cos2 a sin2 $)* 

p cos q5s sin &( cos 0, sin a - sin 0, cos a sin $) 
(sin2 a + cos2 a sin2 $)* 

The parameter $, defined in (18), which, in part, determines the angles q5s and 
0, (see (1 7 a, b ) )  is conveniently expressed in terms of a new parameter ,8 as 

so that ,8 is characteristic of the system as a whole, being independent of the 
detailed motion, and thus of spatial position. 

above, it would clearly be possible at  this point to 
solve the equations of motion (23 a, b )  numerically for arbitrary a and ,8 < 1. 

Using the definition of 
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However, for simplicity, we have instead elected to limit our investigation to the 
special case where 01 = 0; that is, to the case where H is perpendicular t o  the 
tube axis. The case a = &r was essentially solved in $4, as well as by Brenner 
(1970). 

Setting 01 = 0, we note from (24) that y = $. Hence, from (17 a) 

sin2 q5s 3 &( 1 + b-2) - [ t( 1 + p - 2 ) 2  - p-2 s i n 2  #]+ 
and from this, together with the expression for 

cry, I?$), I?$o)) = (g~(O)cos#~sin$~cosB~,  - &P)sin2g5,, - ~w(o)sin$,cos$ssin8,). 

Given these expressions for F0), it is clearly a straightforward process to obtain 
an expansion for w1 and @, valid for /? 4 1. 

given above, we obtain 

Thus, on writing 
4 = /?$(I) + p p  + r$34((3) + . . . , 
w1 = wp’ + /?wp + p2wp  + 83wj3) + . . . , and 

we obtain, after some lengthy algebraic manipulation, the solution 

$ = &$13[&(6p7-21p2+ 15)+&(2p7 -5p4+3p2)sin2$ 

+~e(2p7-3p6+p4)(sin4$-acos4#)1+~(B5),  

w1 = - Q( 1 - p2) + p[&( 1 - p4) + Qp2( 1 - p2) cos 241 

+ 1 -LR(&p9 - gZp6 + 3p4 - 295 3 L O 6  2 sa4P2) cos 2$ 

+ ~ ~ ~ ( ~ ~ p 9 - ~ p B + ~ ~ p 6 - - p 4 )  (cos4q5+~sin4$)]+0(~) .  

The streamlines of the flow in the transverse plane are plotted in figure 4. 
In  oontrast to the cases in which ,!3 = 0 or a = in, this solution exhibits both, 

secondary motion and a non-parabolic axial profile. This result is significant in 
that it offers analytic confirnation of the conjecture, based on the forms of 
(14 a, a), that the resultant velocity fields will generally be distinctly different 
from those which would occur if the suspension behaved as a Newtonian fluid. 

6. General results for spheroidal particles 
In $4 and $ 5 we discussed the bulk motion of the suspension for the special 

case in which the particles are spherical. In  that case, we were able to establish 
the important conclusion that secondary flow never occurs when the strong-field 
approximation is valid. It is of fundamental interest to know whether this be- 
haviour is of general application, or whether it is, perhaps, a unique consequenoe 
of the strong symmetry of spheres. In  addition, it is of practical importance to 
determine the influence of particle shape on such overall properties as the volume 
flow-rate of the suspension for a given applied pressure gradient. Therefore, in 
this section, we consider the bulk motion of a similar suspension of spheroidal 
particles in the strong-field limit. For simplicity, we assume that the permanent 
magnetic dipole of the particles is aligned along the axis of revolution. Com- 
parison of the results with those obtained for spheres allows at least a limited 
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assessment of the importance of particle shape in determining the nature of the 
bulk motion of a suspension in which external particle couples are present. 

We employ the equations of 0 2, together with the strong-field definition of r(O), 

The physical interpretation of this definition is that the particle simply rotates 
freely about its dipole axis, and that this axis is co-linear with the applied field 
vector H for sufficiently strong magnetic fields. For convenience, we employ 

FIFIar?RE 4. The streamline pattern for the secondary motion in the flow through a 
circular cylinder. (The stream-function values have been multiplied by SB--" x lo4.) 

a Cartesian co-ordinate system (see figure 5 )  with one axis aligned in the direction 
of the undisturbed, uni-directional flow. The x1 and x2 axes will be temporarily 
left unspecified. Owing to the symmetry of the spheroidal particles, the unit 
vectors p, q and r may be expressed, relative to this co-ordinate system, simply 
in terms of the polar angles 8 and q5 of the axis of revolution of the particles as 

(26) 

p = (cos 8, sin 0 cos #, sin 8 sin $), 

q = ( - sine, COB e cog 9, cos e sin $1, 
r = (0, -sinr$,cosq5). 
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In the strong-field limit which we have assumed, the magnetic field vector is co- 
linear with the particle dipole, which has itself been assumed to coincide with the 
axis of revolution of the particle. Hence, 0 and q5 define the orientation of the 
applied field (H) relative to the (x,, x,, x3) co-ordinate system, and can thus be con- 
sidered to be given in the specification of the problem in a particular situation. 
This constitutes the major simplification which occurs because of the strong- 
field approximation. Thus, (l), (a), (3), (4), ( 5 ) ,  (S), (25) and (26), together with 
the prescribed orientation of the applied magnetic field and the geometry of the 
flow vessel, complete the specification of the problem for the O(c) modification 
of the velocity field. 

In order to determine the nature of the resultant flow field for arbitrary 
uni-directional, fully developed, undisturbed flows (do), p,) and for arbitrary 
orientations of the applied magnetic field H, we first evaluate the appropriate 
terms of and q5 = a. To maintain sufficient 
generality in the resultant equations, we leave the dynamical variables e(O) and 
do), which enter into the equations, unspecified, except to note that 

for the particular choice 19 = 

for fully developed uni-directional flows (i.e. for do) = uho)(x,, x,) i3). When the 
uni-directional undisturbed velocity profile (ubo)) is symmetric in x1 and x2 as, 
for example, in the flow through vessels with circular symmetry, the orientation 
of the magnetic field H can be completely specified by the single angle a, which 
appears explicitly in the equations. In order to recover a particular orientation 
of the magnetic field in the non-symmetric case, we simply imagine the flow 
vessel to be rotated about the x3 axis, hence effectively changing the function 
ubo’(xl, x2) defining the undisturbed velocity profile. Therefore, by maintaining 
the angle a in the analysis, and by carrying the ‘non-zero ’ components of e(0) and 
do) through in symbolic form, we achieve a completely general representation 
with a minimum of algebraic complexity. Thus, setting 0 = &r and $I = a, and 
combining (2)-(5),  (25) and (26 ) ,  we can re-express (9u,b)  as 

and 

where 

Here, the O( 1) and O(c)  components 40’ and up) have been denoted by w, and w,, 
respectively, and 

sin 2a, 
(a2 + b2) ,  J, + 2a2b21, 

A ~ , u  __ 
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(b2-u2)(a2+b2) u2-b2 
+ ( (a2 + b2)2 J, + 2a2b24) (az+bp cos 2a - 1)] sin ~ a ,  

cos2a sin2a 2b4 sin2 a 
D s 2 p  -+- [ .Il I2 -I- (a2 + b2)2 J2 F Z X J  ' 

a2 - b2 (a2 + b2)2 
+ 1+- cos2a)a( (a%+ b2)2  J2 + 2a2b21, 

sin22a+- 'OS2 2a ( a2 + b 2  
I2 

The condition (1 1 a )  that there be no secondary flow becomes 

In the absence of secondary flow, the condition (1 1 b) ,  that the resultant uni- 
directional profile (wo + cw) be of the same form as for a Newtonian fluid, becomes 

where, as before, V2wo = const. As in the case of spherical particles, the simul- 
taneous satisfaction of these conditions leads directly to an expression, 

for the effective viscosity. In  the general case in which neither (29) nor (30) is 
satisfied, the resultant velocity field will exhibit both secondary flow and a 
modified profile shape for the axial component wo + cwl. The nature of the flow, in 
a particular case, depends on the geometry of the flow vessel (i.e. on wo(xl, x2) ) ,  on 
its orientation relative to the applied magnetic field (i.e. on a and the implicit 
dependence of wo(xl, x2) on the orientation of the vessel about the x3 axis), and, 
finally, on the geometry of the particles (i.e. on a/b and hence also on 11, I,, J1, J2). 

6.1. The existence of secondary $ow 

Although we expect secondary motion in the general case, the condition (29) is 
satisfied in certain exceptional cases which we note here. First of all, when a = 0 
or a = +,, we have A = B = 0, and hence no secondary motion can occur to O(c) .  
These two cases correspond to the applied magnetic field H (and hence the axis of 
revolution of the particle), being perpendicular and parallel, respectively, to the 
undisturbed velocity vector. When the coefficients A and B are not zero, then the 
condition (29) ,  together with (28), leads to the conclusion that 

if secondary motion is not to occur. In  particular, the undisturbed vorticity 
distribution must depend linearly on xl and x2. As noted earlier, this condition is 
actually satisfied for a fairly wide class of flow situations including the totality of 
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two-dimensional undisturbed motions (i.e. do) = uJo)(s, only) is). In  the flow 
through annuli of arbitrary cross-section, however, the undisturbed vorticity is 
not linear in x1 and x2, and hence, provided the various terms on the right-hand 
side of (27a) do not cancel, we would expect to observe secondary motion. This is 
easily codrmed by detailed solutions for the limiting cases where the spheroids 
either become slender 'rods' (a/b -+ co) or flat 'disks' (a/b -+ 0).  

Before proceeding toa considerationof the nature of the O(c) modification to the 
undisturbed profile, it is worthwhile to contrast our conclusions for general 
spheroids with those obtained in Q 4 for spherical particles. Thus, we note that in 
the strong-field limit with sphericaZ particles, no secondary could occur for any 
case in which the undisturbed velocity fieldwas uni-directional and fully developed 
as assumed, whereas for spheroidal particles the situation is less clear-cut with 
the existence or absence of secondary motion being dependent on the geometry of 
the flow vessel. Since, in all cases, 

it is clear, as stated in the introduction, that the qualitative contribution of the 
anti-symmetric portion of bulk stress to the bulk velocity field is the same for 
spheroids as for spheres. By this we mean that, if no secondary motion occurred 
for spheres, then none would occur for spheroids either, unless caused by the 
symmetric portions of the bulk stress. Indeed, the non-homogeneous contribution 
to the right-hand side of (27a) in the circular annulus problem can be shown to 
arise from the symmetric terms of g:io). 

6.2. The form of the velocity proJile for cases of no secondary $ow 
In  this section we consider the application of (30) to  determine the nature of the 
resulting mi-directional velocity profile for the situations, described in $6 .1 ,  in 
which thereisno secondary motion to O(c). When both (29) and (30) are satisfied, 
the suspension can be treated, so far as the velocity field is concerned, as a New- 
tonian fluid with an effective viscosity, 

p" = P(1 +cf (a, a, b ) ) ,  

where f (a,  a,  b)  has been defined in (31). Note thatf(a, a, b) depends implicitly on 
the rotational orientation of the apparatus relative to the xl, x2 axes. Provided 
that the undisturbed motion is fully developed, as we have assumed, we see from 
(28b)  and (30) that the velocity profile will have the same shape as that of a 
Newtonian fluid, provided that a2wo/ax2, and a2wo/axE are individually constant, 
or equivalently, that the undisturbed vorticity components wlo)( = 8w0/8x2) and 
mio)( - 8wo/axl) are linear in x1 and x2, respectively. This condition is satisfied, 
with one exception, whenever there is no secondary motion. The exceptional case 
occurs when a = 0, and wlo) and wio) are not linear functions of x1 and x2. An 
example of such a situation is the flow through an annulus of arbitrary cross- 
section with the magnetic field directed normal to the annulus axis. In  this case, 
no secondary flow occurs, but the resultant uni-directional velocity profile is 
nevertheless not Newtonian in form. The conclusion that the absence of secondary 
flow is not a sufficient condition for a Newtonian-like velocity profile is not unlike 
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that obtained for spheres. In  both cases, a further condition on the form of the 
undisturbed vorticity field is required to guarantee a completely Newtonian 
form for the velocity distribution. 

Hence, so far as the qualitative features of the bulk motion are concerned, the 
primary new contribution, which results from the particles being non-spherical, 
is that the strong-field approximation is no longer a sufficient condition for the 
velocity field (to O(c))  to remain uni-directional. As pointed out previously, this 
new feature is clearly a direct contribution of the symmetric terms of the particle 
stress, since the form of the non-symmetric term is independent of particle shape. 

F I G ~ E  5. The particle orientation relative to the undisturbed velocity vector. 

6.3. The effective viscosity when the velocity field i s  Newtonian 

Of perhaps greater practical importance than this change in qualitative features 
is the role of particle shape in establishing the important overall property which 
governs the volume flow rate for a given imposed pressure gradient. When the 
velocity profile remains Newtonian in form, this property is simply the effective 
viscosity of the suspension. A partial investigation of the Viscosity of suspensions 
of rigidly held spheroids is reported by Chaffey & Mason (1965) based on calcula- 
tions of the extra dissipation induced by the particles. However, this work is 
limited to a consideration of some special orientations of the particles relative to 
a simple, plane shear flow (the particle axis of revolution is assumed to be in the 
plane of the shearing motion). We extend this work to a calculation of the effective 
viscosity, for arbitrary orientation of the magnetic field (and hence of the particles) 
and for all vessel geometries in which the velocity field remains completely 
Newtonian in form. For simplicity, we treat only the limiting cases of slender 
‘rods’ (a/b -+ co) andflat ‘disks’ (a/b -+ 0). We thusevaluatethe function f(a,a,b) 
(equation (29)) using the appropriate asymptotic forms of the integral functions 
11, I., J1 and J2. We recall that, in addition to the explicit dependence of the 
right-hand side of (31) on a, b and a, the expressions for Pwo/i3x~ and a2wO/8xi will 
generally change value due to a rotation of the flow vessel about the u(0) axis. 
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The exceptions to this implicit dependence occur when the undisturbed velocity 
profile is circularly symmetric (as in the flow through a circular cylinder), and 
hence unchanged by such rotations. We denote axes which are fixed in the flow 
vessel by z1 and 5,. Then the orientation of the vessel can be described in terms of 
additional angle y which measures the rotation of the 35, axis from the x, axis, the 
latter being fixed in space (cf. figure 6, in which the Xi system is shown superposed 
on the xi system of figure 5). Hence, 

UCO) = W$"' (Z~,  5,) i, = w0(x1, z2) i,, 
where I 5, = x, cosy + 5, sin y, 

6, = -x,siny+x,cosy. 

Of course, an entirely equivalent geometrical description is obtained by con- 
sidering 5,) 6, axes to be fixed in space with the orientation of the applied magnetic 
field varying. Hence, the angles a and y essentially specify the orientation of the 
applied field H relative to the flow vessel which is now considered to be fixed in 
space. For convenience, we denote 

a*w, a2wo azw, 
azz, az; az, ax, ~ = G,, -- = Q,, ~ - - G, (Gi = const.), (33) 

this being consistent with the requirement (30). Combining (28)) (31), (32 ) )  and 
(33), we obtain the general expressions for the effective viscosity which we have 
listed in table 2. These expressions, derived in the respective limits alb + 00 and 
alb + 0, are valid for arbitrary orientations of the applied magnetic field and 
general uni-directional undisturbed flows, provided that the resultant velocity 
field remains Newtonian in form (hence, that conditions (29) and (30) are 
satisfied). 

We note that the expressions for p* simplify for two-dimensional undisturbed 
flows, and also for the class of problems in which the undisturbed profile is 
circularly symmetric. In  the first case, the effective viscosity becomes independent 
of the details of the undisturbed profile, although not of the orientation of the 
magnetic field relative to do). This follows formally from the fact that G,, and one 
of G, and Gl, can be made equal to zero (with no loss of generality). If G, = 0, for 
example, then y measures the angle of the field vector H from the plane of the 
two-dimensional motion. When the undisturbed profile is circularly symmetric, 
G, G,  and G, = 0. Hence, as expected on physical grounds, the dependence of 
the effective viscosity on y vanishes. Furthermore, the effective viscosity is 
independent of the geometry of the flow vessel. 

It will be noted that each of the expressions in table 2 is apparently singular for 
the majority of particle orientations (a, y).  However, it is not entirely clear, at 
first sight, what interpretation to attach to this result, since, if either of the limits 
was taken with volume concentration c held fixed, the formal expansion pro- 
cedure represented by (7) would clearly become invalidated for sufficiently large 
(or small) values of the axis ratio (alb). In  order for c to be held fixed, however, 
either the maximum linear dimension of each particle would have to  be increased, 
or else the number density of particles would have to be increased. In  either case, 
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FIGURE 6. The rotation of the co-ordinate system. 

cos2 yG, + 2 sin y cos yG, + sin 

Gl + GZ 
Slender rods a/b 9 1 

c z Z  yG, + 2 sin y cos yG, + sin y 

[ & + ( l + E ) s i n 2 a ]  x [ GI + Gz "I Flat disks a/b < I 

77ra 8b 1 sin22a+ cos22a + (1 - cos 2a)z- 

-2sinycosyG,+cos y 

Gl + Gz "I 
TABLE 2. Effective viscosity 

the average interparticle separation in the suspension would decrease so that 
eventually particle-particle interactions would become important and these have 
been neglected throughout our investigation. The physical limiting process which 
is entirely consistant with our theory is, instead, to let (a/b)  -+ co (or (a/b) -+ 0 ) ,  
with both the maximum dimension a (or b )  and the number density of the 
particles fixed. In  these circumstances, volume concentration decreases pro- 
portionally to (a/b)-2 (or @), and the expressions in table 2 remain bounded. 
Nevertheless, when either (a/b) or @/a) is large, the results of table 2 suggest that 
relatively large changes in the effective viscosity may be achieved by changes in 
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the orientation of the magnetic field, and it may be speculated that, in spite of the 
inherent theoretical difficulties, this effect would be enhanced in magnitude by 
moderate increases of the particle concentration. This in turn suggests the im- 
portance of proper alignment of the external field in minimizing energy comsump- 
tion in the transport of such suspensions. Alternatively, it may well be that the 
variations in effective viscosity could be made large enough to enable the flow 
rate to be controlled to a useful extent, say by a variable combination of orienta- 
tion and strength of the applied magnetic field. 
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Applied Mathematics and Theoretical Physics of Cambridge University under 
sponsorship of a National Science Foundation Postdoctoral Fellowship. Special 
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subject of suspension mechanics. 
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